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ABSTRACT
The paper overviews the research on roll forging processes in the last two decades. 
Given the broad scope of this problem, the overview focuses on processes in forging 
plants, omitting those performed in metallurgical plants. Three rolling processes are 
discussed in detail: longitudinal rolling, cross rolling and helical rolling. Each of the 
three techniques is discussed in terms of the main research problems and potential 
directions of future development.  
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INTRODUCTION

Roll forging processes are usually performed 
under hot forming conditions. Depending on the 
type of motion, shape and tool set-up, the follow-
ing processes can be distinguished:
 • longitudinal rolling (Fig. 1a): the workpiece 

performs a translational motion between the 
contrary rotating tools. The points of contact 
between the tools and the workpiece perform 
translational motion toward the length of the 
workpiece;

 • cross rolling (Fig. 1b): the workpiece per-
forms a rotary motion between the tools which 
are rotated in the same direction. The points of 
contact between the workpiece and the tools 
move along the perimeter of the workpiece in 
a plane that is perpendicular to the centre line 
of the workpiece;

 • helical rolling (Fig. 1c): the workpiece per-
forms a translational and rotary motion, and 
the rolls are askew to each other and rotated in 
the same direction. The points of contact be-
tween the workpiece and the tools perform a 
central motion. 

In recent years, many studies have been con-
ducted on roll forging processes, which are more 
and more widely used for producing finished 

products and preforms. This paper provides an 
overview of the results of the studies on roll 
forging processes. 

LONGITUDINAL ROLLING

Longitudinal rolling is the most widely used 
roll forging technique and is predominantly used 
for forming preforms of elongated forgings which 
are then formed on forging presses (Fig. 2). The 
main advantages of this technique include:
 • reduced material consumption (even by 1/3);
 • improved conditions of the die forging pro-

cess, due to the removal of forge scale during 
the rolling process;

 • increased life of dies, due to optimized pre-
form shape;

 • processes for producing preforms are auto-
mated;

 • it is possible to produce preforms with other 
than circular cross sections (e.g. square, rect-
angular and oval); such preforms are very hard 
to produce by cross and helical rolling. 

In longitudinal rolling, preforms can be formed 
in one or several roll passes. One can distinguish 
several basic roll pass systems, schematically il-
lustrated in Figure 3. The combinations shown in 
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this figure can be repeated a required number of 
times. The dimensions of a given roll pass can 
be established using different roll sizing methods, 
e.g. those developed by Spiess, Holler, Bachti-
nov-Shtiernov, Smirnov, Attoshenko, Kaufman, 
Martynov. These methods are described in detail 
in the monograph [45].

Despite a wide use of longitudinal roll-
ing in industrial practice, the number of new 
research works devoted to this forming tech-
nique is relatively small.   

Previous research works on longitudinal roll-
ing are based on experimental tests and engineer-
ing analysis. One example of such a research is 
the study [165] reporting the experimental find-
ings concerning the relationship between the size 
of widening and the cross-sectional reduction 
applied in the rolling of leaf springs. In turn, the 
work [167] describes a rolling process for alu-

 
Fig. 1. Roll forging techniques: a) longitudinal rolling, b) cross rolling, c) helical rolling

 
Fig. 2. Comparison of die forging processes for 
producing a connecting rod for trucks: a) from 

billet (bar) with a square cross section – material 
consumption: 100%, b) from preform produced by 
longitudinal rolling – material consumption: 67%; 

created based on [12]

 
Fig. 3. Systems of stretching roll passes: a) starting material, b) first pass, c) second pass [88]
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minium alloy preforms for connection rods (after 
rolling, the preforms are heated again and sub-
jected to forging on a forging press).

After the year 2000, the research on roll forg-
ing processes was more and more often performed 

by means of FEM-based numerical analysis. The 
analyses were performed using commercial sim-
ulation software such as MSC.AutoForge, MSC.
SuperForm, QForm, Deform-3D. The objectives 
of the numerical analyses included:
 • reducing material consumption via optimized 

shape of the preform [129];
 • determination of metal flow kinematics, mi-

crostructure development and the distribution 
of local strength properties during five roll 
passes when the preform is being formed into 
a connection rod (Fig. 4) [23, 24];

 • design of new types of roll pass including 
oval-flat and oval-rhombic [33, 53, 172], the 
use of which will ensure that effective strains 
are uniform on the cross section of the strip 
being elongated.

A series of publications [9, 40, 42, 43, 152] 
were devoted to the problem of the longitudinal 
rolling of front axle beams for trucks (Fig. 5). The 
study [9] describes a method for accurate deter-
mination of the roll pass design used for forming 
this part, which then served as a basis for devel-
oping a roll pass sizing system shown in Figure 6. 
According to this solution, the front axle beam is 
flash-rolled in three roll passes and then subjected 
to bending and press forging in order to obtain 
the required shape. The studies [40÷42, 152, 175, 
176] report the results of numerical simulations 
which were performed to verify the above solu-
tion. The following were examined during each 
roll pass: changes in the workpiece shape (Fig. 
7), force parameters, the distributions of tempera-
tures, effective strains and stresses. As a result of 
development works conducted in China, 30 pro-
duction lines for manufacturing front axle beams 
(Fig. 8), comprising longitudinal rolling mills 
and screw presses exerting loads of 25÷40 MN. 

 
Fig. 4. Changes in the shape of the semi-finished connection rod, where: 1÷5  - successive roll passes in longitu-

dinal rolling, 6 – flattening, 7 and 8 – die forging, 9 – flash trimming [24]

 
Fig. 5. Schematic design of a standard front axle 

beam for trucks [9]

 
Fig. 6. System of roll pass sizing used in the roll-
ing of a front axle beam; cross sections denoted in 

compliance with Fig. 5 [9]
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The annual throughput of such lines ranges from 
50.000 to 1.000.000 beams (depending on their 
overall dimensions); the yield of material in this 
forming process amounts to 85%÷92%. The life-
time of the roll segments is 8÷15 thousand pieces 
(preforms), which is twice higher than the life-
time of forging dies in which beams are formed 
by bending and additional forging [110].

Specialist literature also provides some infor-
mation about the longitudinal rolling of semi-fin-

ished products made of non-ferrous metal alloys. 
For instance, the study [135] reports the numeri-
cal results of the rolling process for producing a 
preform of lever made of magnesium alloy AZ31. 
The numerical simulations described in the study 
were performed for two different rolling methods, 
i.e., longitudinal and cross-wedge rolling. The 
results reveal that, due to the risk of workpiece 
cracking, lever preforms should be produced by 
longitudinal rolling. This observation was con-
firmed by findings of the experimental tests (Fig. 

 
Fig. 7. FEM-simulated shape of a semi-finished front axle beam produced by longitudinal rolling: a) after first 

roll pass, b) after second roll pass, c) after third roll pass [176]

 
Fig. 8. Production line for manufacturing front axle 

beams and a selection of finished parts [110]

 
Fig. 9. Successive stages of the forming of an AZ31 

alloy preform by longitudinal rolling in the following 
roll impressions: a) oval I, b) circle I, c) oval II, d) 

circle II, e) oval III, f) circle III [8]
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9) which are described in detail in [8]. The pub-
lication [7] reports the experimental results of 
the longitudinal rolling process for producing a 
lever preform made of aluminium alloy 2014. 
The experiments were performed at Lublin Uni-
versity of Technology using a laboratory rolling 
mill provided with the rolls which are 320 mm in 
diameter. In turn, the study [120] reports numeri-
cal and experimental results of the longitudinal 
cold rolling of a compressor blade made of Inco-
nel 718 alloy (Fig. 10). The research was aimed 
at investigating the possibility of increasing roll-
ing accuracy by taking account of elastic strains 
which occur between tools and rolling mill.  

Given the wide use of the roll forging tech-
nique, Eratz Engi neering developed commercial 
forging software to aid the design of tool segments 
for roll forging. This software, known as VeraCAD 
[142], generates, based on a three-dimensional 
model of a forging, the following: a schematic of 
the cross section of the workpiece (including flash 
allowance), 3D models of the workpiece (with cir-
cular, square and oval cross sections), a schematic 
design of roll sizing. After that, the programme 
simulates the way in which the rolls should be 
sized and shows preform shape after every roll 
pass, producing a 3D model of the tool segment 
(it is possible to generate a code for CNC machine 
tools) and their technical documentation in 2D. 
VeraCAD significantly facilitates the design of a 
required longitudinal rolling process, and infor-
mation about its applications can be found in the 
specialist literature, e.g. in [146].  

CROSS ROLLING

Among the many cross rolling processes, 
cross wedge rolling (CWR) is a technique which 
is the most widely used in the forging industry. 
The CWR technique consists in the metal form-
ing of axisymmetric parts by wedge-shaped tools 
which are mounted either on the rolls or on flat 
or concave rolling mill plates. The CWR method 
is widely used to produce such parts as stepped 
axes and shafts as well as to produce preforms 
for press forging. 

The state of the art in the theory and technol-
ogy of CWR before 1992 was exhaustively de-
scribed in [18]. However, this interesting forming 
technique was the subject of numerous research 
works published in the last two decades, the re-
sults of which seem worth highlighting. 

Initially, CWR processes were investigated 
exclusively by engineering analysis methods. 
Those methods enabled the determination of ba-
sic force parameters. Next, a new method of layer 
modelling was developed [59, 87, 89, 92]. The 
method was based on the similarity between the 
patterns of metal flow in the cross section of the 
workpiece in CWR and rotary compression. The 
solution consisted in the modelling of a deforma-
tion zone by means of adjacent layers (Fig. 11) de-
scribed by a two-dimensional state of strain. The 
layer method enables determining not only basic 
force parameters at every stage of the process but 
forecasting stability of the rolling process. More-
over, this method was used for the multi-criteria 
optimization of basic parameters in CWR [102].

CWR processes can be best investigated by 
modelling with the finite element method (FEM). 
Given the complexity of the deformation process, 
the tool pitch which is many times higher than 

 
Fig. 10. Comparison of the FEM and experimental 

results of the shape of an Inconel 718 alloy compres-
sor blade formed by cold rolling [120]

 
Fig. 11. Layer model of the deformation zone in 

CWR introduced by Pater
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the dimensions of the workpiece and the type of 
metal-tool contact, the modelling of CWR pro-
cesses was not successful until the twenty-first 
century. Numerous studies published so far report 
the results of numerical simulations. The simula-
tions were performed using the following simu-
lation software: ANSYS/LS-DYNA [11, 13÷16, 
34, 38, 39, 47, 48, 106, 107, 126, 128, 139, 140, 
149, 153, 156, 162, 170], Deform 3D [17, 19, 21, 
26, 28÷32, 35, 44, 49, 50, 54, 74, 75, 81, 86, 104, 
108, 112, 113, 121, 124, 125, 127, 130, 143÷145, 
148, 150, 154, 155, 157, 159÷161, 163, 166, 169, 
171, 173, 174], Forge 3 [37, 51, 52, 56, 109], 
MSC.SuperForm, MARC.AutoForge and Simu-
fact.Forming [3, 5, 27, 66, 67, 69, 71, 77, 90, 91, 
95, 111]. A vast number of the numerical analy-
ses and experimental tests  [5, 13÷16, 29, 39, 46, 
47, 54, 56, 57, 61, 90, 113, 139, 148, 162, 173, 
174] were focused on the modelling of failure 
modes which may occur in CWR such as uncon-
trolled slipping, step necking, workpiece bend-
ing and material cracking. In addition, the FEM 
was used to investigate forces [4, 52, 107, 126] 
and the variations in workpiece temperature [42, 
66, 112], microstructure [19, 28, 29, 34, 49, 145, 
154], stresses [16, 17, 67, 90, 128, 148, 153, 162, 
169], strains [26, 67, 91, 96, 113, 121, 153, 163], 
and tool wear [27].

As a result of both the development of com-
puter software for modelling metal forming pro-
cesses and enhanced computational possibilities 
of digital machines, it is possible to model even 

the most complex CWR processes using personal 
computers [80]. For instance, a PC can be used 
to model the rolling process for producing a drive 
shaft which is shown in Fig. 12. In this process, the 
shaft is formed by two flat wedges from a billet, 
the diameter of which is equal to the largest step to 
be formed on the shaft. The end steps of the shaft 
are formed here at the reduction ratios δ (where: 
δ=d0/d; d0 – billet diameter, d – diameter of the 
rolled step) which are equal up to 3.33. In order to 
make such a high cross-sectional reduction possi-
ble, the rolling process must be performed in two 
stages: first, the intermediate diameter of the step 
is formed, and then the final diameter is produced.

To increase the technological potential of 
cross wedge rolling, a number of theoretical and 
experimental studies were conducted. Some of 
them focused on CWR processes for producing 
parts with steps with other than circular cross sec-
tions (e.g. square, oval, hexagonal). Such steps 
can be produced using tools which have spe-
cially formed sizing surfaces. Numerical results 
and experimental findings [1, 25, 50, 76, 80, 103, 
171] demonstrate that the CWR technique can 
be applied to produce non-axisymmetric prod-
ucts. Such forming processes are characterized 
by oscillatory variations in forces resulting from 
the cyclically changing rolling reduction. One ex-
ample of such a process is the forming of cams on 
a stepped shaft, described in [1, 25, 171].  Figure 
13 illustrates the successive stages of forming the 
cam, as determined with Deform-3D.

There have also been studies investigating 
CWR processes for producing shafts with toothed 
coiling or worms.  The design of such processes 
consists in the use of special inserts for forming 

 
Fig. 12. Numerically modelled changes in the shape 

of a drive shaft produced by CWR [80]

 
Fig. 13. Changes in shape of the cross section of a 

cam produced by CWR: a) – f) successive stages of 
the forming process [50]
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coils; the inserts are mounted at the end of the 
tool segment, beyond the sizing zone. The results 
of preliminary research on the rolling of toothed 
shafts with normal teeth (Fig. 14) and helical 
teeth [35, 58, 73, 76, 133, 166] as well as worm 
shafts (Fig. 15) [62, 72, 76, 79, 157÷159] are 
promising. The results demonstrate that the CWR 
method can be used to produce teeth and worms, 
the shape of which can later be slightly corrected 
by means of accurate milling or grinding.  

It should also be mentioned that the CWR 
process was successfully implemented to produce 

screw spikes, including those formed in a double 
configuration [20, 22, 70, 78, 81, 141, 151]. The 
new method for producing screws designed and 
developed at Lublin University of Technology 
[20, 22, 70, 78, 81, 151] consists in the use of two 
forging operations. The first operation involves 
the flashless forging of screw heads in a double 
configuration, i.e., screw heads are formed on 
both ends of a cylindrical bar. The second opera-
tion consists in forming a thread on two screws 
by cross wedge rolling (as shown in Fig. 16); the 
screws are separated in the final stage of the form-
ing process. Thereby, the produced screw spikes 
have a good quality, the required grain pattern 
and the desired tapered ends (Fig. 17). 

Given a growing demand for hollow parts in 
machine design, studies have also been conduct-
ed on the possibility of producing such parts by 
CWR methods. The results of the extensive re-
search [2÷5, 26, 30, 32, 49, 94, 98, 105, 108, 130, 
131, 139, 140, 160, 161, 163] demonstrate that:
 • the cross rolling technique can be used to form 

parts, the accuracy of which is similar to that 
of solid parts produced by rolling; potential 
failure modes which may occur during the 
forming process include collapse of a work-
piece, workpiece necking and considerable 
defects of its internal surface;

 • the angles of tools (wedges) should differ from 
those applied in the rolling of solid parts; the 
principles of selecting these angles are formu-
lated in [2, 3, 5];

 • due to increased cross-sectional ovalization, 
the sizing zone should be elongated such that 
the workpiece can be rotated approx. 3 times. 

The findings of the survey of the specialist 
literature reveal that previous developments in 
the CWR technique focused on the production 
of steel parts, and little attention was put on the 
production of parts made of non-ferrous metals 
and their alloys. There have been attempts to 
form parts made of titanium alloys [6, 55, 69, 75, 
98], aluminium alloys [75, 94, 137], magnesium 
alloys [104] and nickel-based superalloys [54], 

 
Fig. 14. Shaft with straight teeth (number of teeth: 18; 

module: 1.5) produced by cross rolling [76]

Fig. 15. Worm shafts (with single coiling, coil height: 
3 mm) produced by cross rolling [76]

 
Fig. 16. Numerical model of a rolling process for pro-
ducing screw spikes (axial symmetry of the forming 

process is assumed) [81]

 
Fig. 17. Longitudinal section of the screw spike 

thread produced by cross wedge rolling [20]
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copper balls [117] and zinc alloy shafts used in 
nuclear reactors [118]. It seems that the research 
on CWR for non-ferrous materials will become 
one of the research trends in the future. 

In recent years, considerable research has been 
conducted on the multi-wedge rolling technique 
wherein the workpiece is formed by more than 
one pair of wedges (tools) at the same time.  Al-
though this solution leads to a considerable short-
ening of the tool length,  it results in increasing 
the forming forces. The design of tool segments 
is more complicated, too, because the shape of 
the side wedges must allow for the elongation of 
the workpiece caused by the impact of the central 
wedges [83, 125, 168]. The multi-wedge rolling 
technique can be used for producing:
 • very long shafts and axes, e.g. for cars and 

trains [108, 128, 153, 170];
 • several (or more) short parts at the same time, 

including balls for ball mills and bearings 
(Fig. 18) [83, 84, 97]. 

significantly difficult to design and build these 
tools. For this reason, the helical roll forging 
technique is only used for producing parts with 
relatively simple shapes, for example bearing 
rings or balls for bearings or ball mills.

As a result of a small range of applications 
for helical wedge rolling in industrial process, 
there are only a few recent studies devoted to 
this technique. The studies mainly concerned the 
FEM-based numerical modelling of rolling pro-
cesses for rings [36, 116] and balls [10, 114, 115, 
123, 132, 138] as well as the design of tools used 
for these processes [10, 100, 122, 147, 164].

In recent years, Lublin University of Tech-
nology has run an extensive research programme 
aimed at designing a new rolling method for 
forming steel balls from heads of scrap railway 
rails [101]. The project led to the development of 
a new rolling technique called helical wedge roll-
ing (HWR). The technique is based on the use of 
wedges with helical grooves which are mounted 
on the rolls to ensure that parts are formed in a 
continuous manner. The numerical results and 
experimental findings demonstrate that helical 
wedge rolling is a viable technique for forming 
balls [60, 63, 68, 85, 99, 101, 134, 136].  Figure 
19 shows the tools used in the HWR for balls and 
semi-finished balls. Parts formed with these tools 
exhibit high quality and manufacturing accuracy. 

 
Fig. 18. Multi-wedge tools and 22 mm diameter steel 

balls formed by these tools; based on [83]

HELICAL ROLLING

Helical rolling processes are seldom used in 
industrial practice. This results from the fact that 
the tools (rolls) used in this process have helical 
grooves on their perimeter; the grooves are of a 
varying shape and pitch (due to the constancy-
of-volume relationship of the workpiece con-
strained in a roll pass formed by two or three 
grooves on the mating rolls), which makes it 

Fig. 19. Rolls used in helical-wedge rolling (top)
and 33 mm diameter balls formed by these tools 

(down) [68]
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The satisfactory results of the helical wedge 
rolling technique for producing balls led a team of 
researchers from Lublin University of Technolo-
gy to investigate if this new manufacturing tech-
nique could be used for manufacturing some other 
parts. The results of the FEM numerical analyses 
described in detail in [64, 65, 93] demonstrate that 
the helical rolling method can be used to produce 
fixings, stepped shafts and bodies of rotary cutters 
(Fig. 20). At the same time, the authors underline 
the need for further experimental investigations 
of the helical wedge rolling technique to expand 
its application to the production of other products, 
including hollow parts. 

CONCLUSIONS

The survey of the literature led to the formu-
lation of the following conclusions: 
 • roll forging processes are more and more widely 

used in industrial practice, predominantly for 
forming preforms and axisymmetric parts; 

 • the research on the above processes is pre-
dominantly conducted using numerical tech-
niques, particularly those based on the finite 
element method;

 • the development of longitudinal rolling pre-
dominantly involves the design of new roll 
passes and a new technique for forming front 
axle beams;

 • cross wedge rolling processes were greatly de-
veloped in the last twenty years; in particular, 
one can observe a growing popularity of the 
cross wedge rolling technique;

 • helical rolling is seldom used in industrial 
practice due to the complex design of the tools 
ensuring the formation of parts with the re-
quired quality. 
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